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We discuss intermittency effects in fully developed hydrodynamic turbulence. It 
is shown that the application of the bounded log-normal distribution to the 
fluctuations of the local energy dissipation rate resolves some basic difficulties 
related to Kolmogorov's third hypothesis and gives a good agreement with 
experiment. The nonlinear interaction of the large-scale and inertial-range 
turbulent pulsations of the velocities may explain the observable characteristics 
of the intermittency. We give also a detailed comparison of the results obtained 
with the use of the bounded log-normal distribution with that obtained in the 
framework of the homogeneous and random /~-models, a two-scale Cantor set 
approximation, and the original unbounded log-normal distribution suggested 
by Kolmogorov and Obukhov. 

KEY WORDS:  Intermittency effects; Kolmogorov's third hypothesis; 
bounded log-normal distribution; multifractal structure of turbulence. 

1. I N T R O D U C T I O N  

Kolmogorov's 1941 theory (1'2) suggested a universal scenario of random 
motion in high-Reynolds-number incompressible fluid turbulence. Its basic 
feature is a self-similar relay cascade of kinetic energy from the large 
(injection) scales to the small (dissipation) scales retaining the mean rate of 
energy dissipation. However, as remarked by Landau and Lifshitz, (2/ the 
fluctuations in the local rate of energy transfer should also be taken into 
account. Through in the main approximation Kolmogorov's predictions 
appear to be in good correspondence with experiments, ~ subsequent data 
showed regular deviations from the Kolmogorov scaling laws for the 
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weighted relative velocity averages (recent experimental results and further 
references can be found in refs. 3-6; a review is given ref. 7). These devia- 
tions are just related to the fluctuations in local energy transfer and are 
called usually intermittency effects. 

Various particular mechanisms of intermittency have been discussed in 
numerous papers (the different stages of those investigations are partially 
summarized in refs. 1, 8, and 9). The most popular theories include: the 
log-normal model of fluctuations of the local energy transfer rate by 
Kolmogorov (1~ and Obukhov, (1I) the fi-model (12) and its modifica- 
tions,{13 16) and the two-scale Cantor set approximation for the energy dis- 
sipation distribution. (17'18) Since the rigorous derivation of the turbulence 
characteristics from first principles has not been achieved, the physical 
status of all these models remains mainly heuristic and needs further 
theoretical investigation and more detailed comparison with the experimen- 
tal results. 

We will show in this paper that the application of the bounded log- 
normal distribution for the fluctuations of energy dissipation rate instead of 
the original unbounded Kolmogorov-Obukhov distribution resolves some 
principle difficulties related to this model and gives good agreement with 
experiment. The mechanism based on the nonlinear interaction of the 
large-scale and inertial-range turbulent pulsations of the velocities may 
explain the main observable characteristics of intermittency. The results 
obtained in the framework of various theories are summarized and 
compared. 

2. L O G - N O R M A L  M O D E L  

The experiments show (cf., e.g., ref. 6) that, strictly speaking, the 
intermittency characteristics may depend on whether the direct non- 
centered fluctuations of energy dissipation rate per unit mass e are 
considered or the centered fluctuations near the mean value 8 - g  are 
investigated. Below we will restrict ourselves to the first case and imply 
everywhere the fulfilment of inequalities ln(L/r) >> r >> l~, where L and l~ are 
the external and internal scales of turbulence, respectively. 

According to Kolmogorov (1~ and Obukhov, ~11) the local fluctuations 
of energy transfer rate in a fluid volume with length scale ~ r  can be 
described with the use of a log-normal distribution: 

1 { [ln(er/g)+3a~/2]2] 
P(~r) gar(27z)l/2exp or2- 2a~ J (1) 

a2r = ~ ln(L/r) (2) 
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The moments (eq) are determined by 

( s q ) =  d ~ r s q p ( s r ) = g q ( L / r ) ~ q ( q  1)/2 (3) 

Equations (1)-(3) are frequently called Kolmogorov's third hypothesis. We 
have used the simplified expression for the variance a 2 in Eq. (2) instead of 

~r r2 = A + # In(L/r) 

in the original version, (1~ since the constant A can change only the 
numerical factors in Eq. (3) and its values are experimentally not known. 

Equations (1)-(3) are the particular realization of the general model of 
random fragmentation considered by Kolmogorov. (19) In the context of 
turbulent cascade (see, e.g., refs. 10~22) it means that an energy flow 
transferred at the nth step of consecutive fragmentation en (starting at 
scales ~ L) is connected to a previous value en ~ by the relationship 

8n = anSn - 1 

8 n = a n a n _  1 . . . a 1 8  

where {a,} are random fractions (0 < a n <  1). Taking the logarithm of e,, 
it is easy to see that In G is transformed into a sum of random variables, 
which is distributed under some general restrictions accordinig to the 
Gaussian law (19) (the more general situation has been discussed by 
Mandelbrot(23)). 

The fluctuations of the relative velocities 6vr= [v(R + r ) - v ( R ) t  are 
correspondingly determined by 

(~)vq)  =(13  rq/3 )rq/~ OC rq/3 - lzq/3 (4) 

In what follows D r will always be understood in the sense of cSvr. 
Comparing Eqs. (4) and (3), one obtains 

# 
~q = ~ q ( q -  1) (5) 

On the other hand, as has been proved by Novikov, (22) the corrections ]~q 
cannot increase to the limit of large q stronger than linear, in the contradic- 
tion to Eq. (5). Experimentally, the good correspondence with the log- 
normal model occurs for low values of q and the divergence from the 
log-normal predictions (1)-(5) is observed beginning approximately at 
q > 3. We will show below how these difficulties can be resolved. 
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The necessary modification of the original Kolmogorov-Obukhov log- 
normal distribution is naturally related to the general physical picture of 
the Kolmogorov turbulence. The energy is injected at the large scales ~ L 
and then is consecutively repumped to the dissipation range (at the scales 
,-~l,). Thus, the inertial interval is bounded by the energy injection range 
(at r~L) and by the dissipation range (at r~l,). Taking into account 
these two boundaries, it is evident that the limits of integration in Eq. (3) 
should be replaced by em .... and 8rain, r. If the saddle value of the expression 
under the integral in Eq. (3) is placed within the interval (em~ .... e . . . . .  ), 

then the influence of the boundaries can be neglected and the original 
unbounded Kolmogorov-Obukhov distribution is applicable. However, the 
saddle value e,,r tends beyond the interval (gmi . . . .  g . . . . .  ) with the increase 
of Iql (where tql is the modulus of q) and the applicability of the un- 
bounded distribution fails at large values of Lql. The logarithmic character 
of the relevant changes in e (log-normality of distribution) is naturally 
important, since even in the most favorable case of atmospheric turbulence 
with enormous Reynolds numbers Re ~ 108-109 the respective changes in 
logarithms remain only an order of magnitude. This is why gs, r grows 
beyond (emi .... e . . . . .  ) rather rapidly even at relatively modest values of q 
(see below). Next, it is reasonable to assume that the corresponding 
characteristic values of the maximum and minimum energy dissipation 
rates 8max, r and emi,,r for a fluid volume with sizes ~ r  are also scaled 
according to 

g . . . . .  / ~  c l (L/r)  ~ ( 6 )  

g min, r /g  ~,~, c2(L/r) -~2 ( 7 )  

where cq > 0, 0~ 2 > 0. In the limit ln(L/r)> 1 all moments <~ > will mainly 
be determined by the exponents e~ and e2, while the particular values of 
the constants c 1 and c 2 are not important within logarithmic accuracy. 
Figure 1 illustrates the systematic increase of the intermittency effects with 
a decrease of scale size. 

Using the saddle value of the unbounded log-normal distribution 
(1)-(3) for a rough estimate, the criterion of applicability of the 
Kolmogorov-Obukhov intermittency approximation may be written in the 
form 

-c~ 2 > ( q -  1/2)/1 > ~1 (8) 

As can easily be proved (see also below), the quadratic corrections (5) will 
be replaced by linear ones with the increase of ]ql and beyond the interval 
(8) in accordance with Novikov's argumentation. (=) It is worth also noting 
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Fig. 1. Schematic increase of intermittency with a decrease of scale size. 

the correspondence with ideas discussed in weak turbulence models, where 
the boundaries in the energy space also play an important role in the 
general balance of the energy transfer even for the local spectraJ 24~ 

Numerical estimates of the constants c~1, c~z, and # can be obtained 
from the following physical suggestions. In the first approximation of the 
purely Kolmogorov turbulence the nonlinear interactions of eddies with 
the same characteristic size --,r are the most important. If only these inter- 
actions are retained, then within the framework of such a truncation 
scheme the local energy transfer rate will approximately remain constant, 

er ~ v~/~r ~ v~/r ~ g (9) 

At the next step the nonlinear coupling of the turbulent eddies with 
two drastically different lengths should be taken into account, while the 
simultaneous interaction of eddies with three different length scales ~ L, 
,-~r, andc ~ l ,  can still be neglected. Since experiments suggest that the 
intermittency corrections are expanded with respect to the large ratio ( L / r )  
rather than ( r / l , ) ,  we will restrict ourselves to the coupling of macroscale 
energy injection pulsations with size ~ L  and inertial-range (L>>r ~>l,) 
turbulent velocities. The perturbation series also suggest on the dominant 
role of the infrared (small-wavenumber) divergences over the ultraviolet 
(large-wavenumber) ones (see, e.g., refs. 25-28). The particular dynamical 
aspects of this interaction cannot be discussed within the framework of our 
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qualitative considerations, but the possible scenario may be analogous to 
that suggested by Siggia (29) and supported later by computer simula- 
tions. (3~ Very roughly one could say that an intermittent relative velocity 
with scale ,-~ r now has the admixture of velocity pulsations with scale ~ L, 
i.e., 

v~i)(t) ~ at(t)  Vr(t) + aL(t) vc(t) 

with more or less random triggering of the coefficients a~(t) and aL(t) 
(0<c~< 1). Since the Kolmogorov picture has been used as the first 
approximation, this implies that the averaged admixture is not very strong, 

( a t ( t )  IvL(t)l > < (a~(t) IVr(t)l > 

The nonlinear coupling of the turbulent pulsations with length scales ~ L 
and ~ r  causes fluctuations in local energy transfer rates e~ and gives the 
following estimates: 

2 
. . . . .  "~ I) L/~ r ~ I)2L I)r//r ( 1 0 )  

~min, r ~ l)2r/'~L "~ U21)L/z  ( 1 1 )  

In the large length scale limit ( r ~ L )  the intermittency fluctuations are 
relatively weak (see (Fig. 1) and the corresponding random energy transfer 

q rates ~L are approximately self-averaging (i.e., (~L} ~ gq). Substituting in 
the first approximation the Kolmogorov value vr~gl/3r 1/3 into Eqs. (10) 
and (11), one obtains immediately 

. . . .  rig ~ ( L / r )  2/3 (12) 

~min, r/~ ~' ( L / r )  - 2/3 ( 13 ) 

i.e., ~1 ~ ~2 ~ 2/3.  
A similar (though more arbitrary) argument can be applied to the 

variance constant ~. Replacing in e2~v6/r  2 the velocity V r by v~ i~ and 
taking into account that the averaged admixture of vL should not be 
relatively strong, one obtains as a rough estimate 

@2 >/g2 ~ ( L/r )~ ~ v L v~/v 6 ~ ( L/r ) ~/3 (14) 

i.e., / ~  1/3. The variance constant # has been measured by many 
authors~3 7) and its modern values range within the interval/2 ~ 0.2-0.3. On 
the other hand, using the experimental data, (iv'iS/one can obtain [see also 
Eqs. (22a) and (22b) below] that e1~0.5  and c~2~0.7 (with accuracy 
~20%) .  All these values are rather close to our rough estimates. 
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Substituting el =~2=2 /3 ,  # =  1/3 into inequality (8), one obtains the 
deviations from the unbounded log-normal distribution beginning at 
[q[ > 3, which is also in a good agreement with the experiments. 

A partial improvement of these estimates can be obtained by subse- 
1/3 and quent iterations of the initial Kolmogorov values. This means that er 

e 2/3 in Eqs. (10) and (11), respectively, should be treated as (e~/3) and 
(~/3) ,  or 

:q ~ 2/3 + #2/3 

~2 ~ 2/3 - #2/3 

The corrections to # in Eq. (14) are much more ambiguous, since (e~) 
could be understood both in the s e n s e  (~2)~Vg(p5)/r2 and ( e 2 ) ~  
gvL(v~)/r. Intuition based on the general theory of random processes (cf., 
e.g., the variations in a random addition) gives some preference to the 
second expression. Taking this form, one obtains the estimate 

#2 - # ~ 1/3 + #2/3 

Since for low values of q, Eq. (5) gives a reasonably good approximation 
for #1/3 and #2/3, the corrected values of the exponents can easily be 
obtained in explicit form and are equal to # ~0.3, c~1 ~0.63, and c~ 2 ~0.7. 
Despite the heuristic character of these estimates, they give interesting 
information and may shed additional light on the problem of intermittency. 
In the general situation all these parameters should be treated as fitting 
ones. 

In a recent paper, Meneveau and Sreenivasan 131) suggested the 
asymptotic value D~ =0 .12+  0.08 (or cq =0.88 +0.08) using the extreme 
tails of the probability distribution function P(~r/eL)" A reliable extrapola- 
tion to this extreme range is a very subtle procedure, which may, e.g., 
depend on the scaling resolution (on the box sizes of a net) and other 
factors. In these circumstance we should clearly state that although the 
bounded log-normal distribution extends the range of applicability of 
the log-normal approximation to higher orders of moments, nevertheless 
there exists some limiting value a (b~ in the bounded case as well 

-1 c r ,  m a x  

[cf. Eq. (8)]. The value o (b~ is related to the fine structure of the 
-1 c r ,  m a x  

probability distribution near the boundaries s r and e . . . . . .  since these 
values are also fluctuating. We have assumed the simplest possibility of the 
very abrupt decrease of P(er) beyond the interval (~m~ .... e . . . . .  ) (much 
faster than the log-normal tails(31)). Thus, the infinite limits of the 
generalized dimensions Dq [see Eq. (21) below] in the bounded log-normal 
model should be understood in the sense of relatively high [with respect to 
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interval (8)] values of q ~  10~15 (or that obtained by the linear extra- 
polation from this range) rather than real infinity. The analytical criterion 
for a (b~176 depends on the fine structure of tails n e a r  ~min, r and e . . . . .  and -1 c r ,  m a x  

cannot be written explicitly within the framework of our semiquantitative 
theory. The estimates for e~ and e2 obtained from Dq in the range of lql 
10 15 in ref. 31 give values all within the interval 0.5-0.7. 

We end this section by describing some particular consequences of the 
application of the bounded log-normal distribution: 

P(~) =A~ exp { [ln(~'/g)+b~:]z} 
- 2o-~ ( 1 5 )  

f ~max, r 

(g~) = d~r~qrP(~r) (16 )  
C m i n ,  r 

( a ~  t, @ ~ ) = g  (17) 

o-~ ,.~ #~ In (L/r) (18) 

In the bounded log-normal model the parameters #r and br are weakly 
dependent functions of in ln(L/r), since the scaling corrections should 
rigorously be absent in Eqs. (17). If the constants cq and c~ 2 are already 
fitted [see Eqs. (22) below], then a one-parameter family of functions #r 
and b r is unambiguously fixed by any additional external restriction. The 
most usual condition is the normalization to the given experimental value 
of correlation exponent #2- Thus, in the most general case the bounded 
log-normal distribution is characterized by three fitting parameters c~z, ~2, 
and #2. However, since in the example concerned the variations in #r are 
very weak, we will give the direct value of #r. 
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Scaling behavior of moments (er ~) obtained with the use of the bounded log-normal 
distribution (6), (7), and (15)-(18) with ~1 = 0.5, e2 =0.7, and/~r = 0.245. 
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Fig. 3. The typical asymptotic outcomes to the scaling behavior for the averages ( ~ )  and 
(es 5) in the case of the bounded log-normal distribution (6), (7), and (15) (18) with 
cq =0.5, e2=0.7, and #r =0.245. 

We will utilize the experimental values by Meneveau and 
Sreenivasan, (17'18~ cq=0.5, c~2=0.7, and #2=0.25. The parameter # in 
Eq. (18) is determined by the condition 

(a~) oc r ~2 (19) 

which gives #r=0.245 and br = 1.5 for #2=0.25 (cf. the corresponding 
values # = 0.25 and b = 3/2 for the unbounded log-normal model). Figures 
2 and 3 show the scaling behavior of the moments (erq). The values of #r 
and br have changed no more than 0.001 within the logarithmic range of 
In(Lit) from 5 to 25. Figures 4 and 5 illustrate the dependences on q of 
constants Cq and #q defined according to 

( E q ) = Cqgq( L/r  ) #q (20) 

As is seen from Fig. 5, #q depends linearly on q in the limit of large Iql in 
the case of the bounded log-normal distribution (solid line) in comparison 
with the quadratic dependence on [q[ for the unbounded distribution 
(dashed line), while for small q, both distributions coincide. 

3. TWO-SCALE CANTOR SET MODEL 

The characteristics of random processes can also be described with the 
use of multifractal theory (32~ (see also the review in ref. 15). The 
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Fig. 4. 
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The plot of Cq [see Eq. (20)] versus q for the bounded log-normal distribution with 
cq =0.5, e2=0.7, and #r = 0.245. 
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Fig. 5. Plots of #q [see Eq. (20)] versus q for the bounded log-normal distribution with 
al = 0.5, c% = 0.7, and/1 r = 0.245 (solid line) and for the unbounded log-normal distribution 
with ,u =0.25 in Eq. (5) (dashed line). 
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correspondence of the multifractal description and the exponents #q in 
Eq. (20) is determined by the relationship 

~q= (O - D q ) ( q -  1) (21) 

where D is the effective spatial dimension in a physical experiment, and 
{Dq} are the so-called generalized Renyi dimensions. Comparing Eqs. (6), 
(7), (15)-(18), and (21), it is easy, in particular, to see that 

~1 = D - D ~  (22a) 

~2=D ~ - D  (22b) 

Meneveau and Sreenivasan ~17'18'31~ have studied the one-dimensional 
cuts of a turbulent flow (D = 1). They showed empirically that all of the 
experimental data for a variety of situations can be fitted by two-scale 
Cantor set dimensions, 

1 
= log2(0.7 q + 0.3 q) (23) Dq 1 - q  

within ,-~ 10 % accuracy. For example, the experimental value of #2 is equal 
to 0.25 +0.05, while Eq. (23) gives #2 =0.214. Physically, the approxima- 
tion (23) implies an unequal redistribution of energy during the consecutive 
process of eddy fragmentation, namely, it is supposed that one-half of the 
daughter eddies take fraction pl = 0.7 of energy of a mother eddy at each 
step of fragmentation, while the second half of the produced eddies take 
fraction P2 = 1 - Pl of an initial energy. (18) 

Figure 6 ilustrates the distinction between the two-scale Cantor set 
approximation (23) (dotted line) from the results obtained with the use of 
the bounded log-normal distribution (solid line). The parameters cq , ~2, 
and/~r [see Eqs. (6), (7), (15)-(18), and (22)] have been determined by the 
coincidence of D~, D ~, and #2 with the corresponding values in 
Eq. (23). As is evident from Fig. 6, the two curves are practically 
indiscernible from the experimental point of view. 

4. 1 3 - M O D E L  

Using in part the ideas of refs. 23 and 33, Frisch et al. t12) suggested the 
so-called homogeneous //-model of intermittency. It is supposed in this 
model that the centers of Kolmogorov eddies with sizes ~ r  (L > r >  l,) fill 
only a fraction of the physical space during fragmentation and energy 
transfer. A manifold of Kolmogorov eddies forms a homogeneous fractal 
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Fig. 6. The generalized Renyi dimension Oq versus q for the two-scale Cantor  set [Eq. (23) 
and dashed line] and for the bounded log-normal distribution with cq = 0.485, cd=  0.737, and 
#r=0.211 [Eqs. (6), (7), (15)-(18), (21), and solid line]. 

with Hausdorff dimension Df (D > Dr). The corresponding rate of energy 
transfer is in this case given by 

Pf(r) v3r(r)/r ~ ~ (24) 

where pr(r) is the probability that an arbitrarily chosen point of a fluid 
volume with sizes ~ r belongs to the eddy fractal, and the subscript in vf(r) 
means that a turbulent velocity is taken on a fractal (these are the excep- 
tional regions where the values of turbulent velocities are not equal to 
zero). In the case of a homogeneous fractal with dimension D s the 
probability Pr(r) has the form 

Pf(r)~ (r/L) D D/ (25) 

The various moments are determined according to 

(~q)~pf(r)[@(r)/r]q~gqp~ q(r)~gq(L/r)(D D:)(q--l) (26) 

i.e., the exponents ]Aq [see Eq. (20)] are in the/?-model equal to 

]~q= ( D -  Df ) (q -  1) (27) 

and in particular, (23'12) 

#2 = D - Dj (28) 
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The predictions of the homogeneous//-model are distinctly ruled out 
by experiments (see, e.g., refs. 6, 17, 18, and 31). For this reason in refs. 13 
and 14 a multifractal generalization of the homogeneous p-model has been 
suggested. In this theory (called the random /?-model) it is assumed that 
the curdling factors in the eddy cascade are mutually independent random 
variables at each step of consecutive fragmentation. For cascades with a 
contraction of scales by a factor of two, the random/?-model gives for the 
exponents /2q (13 15) 

,Uq = log2(fl I q) (29) 

f Bmax 
( / 7 1 - ~ )  = d/? P(/?)/?~ ~ (30) 

flmin 

fflmaxdflP(fl)= 1 (31)  
/~mln 

1 ~/?max>flmin~2 -D (32)  

where the probability P(fl) describes the distribution of the random space 
curdling factors ft. Using Eqs. (21) and (29)-(32), one obtains that in the 
random//-model the following restrictions should be fulfilled: 

flmin = 2 -(D /~o) (33) 

D>~D ~ (34) 

Siebesma et al. (16) considered the random /?-model with a partial 
correlation between various steps of fragmentation. It is, however, impor- 
tant that the restrictions (33) and (34) hold in their version as well. 

5. C O M P A R I S O N  O F  V A R I O U S  M O D E L S .  C O N C L U S I O N  

In order to compare the results of various models, we will again use 
the experimental data by Meneveau and Sreenivasan. (17'18) Following the 
original paper, (14) we restrict ourselves to the simple two-parameter 
approximation of the random /?-model with the probability distribution 
P(/?) taken in the form 

P( f l ) - -  ( l - p )  6 ( f l - f l o ) + p 3 ( f l -  1) (35) 

2 -D</?o<  1, 0 < p < l  (36) 

Equation (35) means that the centers of Kolmogorov eddies fill the overall 
physical space with probability p, while with a probability ( 1 -  p) they 
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belong to a homogeneous fractal with Hausdorff dimension DC + log2/~o, 
It follows from Eq. (33) that 

/~o = 2 - W -  z)~) (37) 

For this reason the fitting parameters /~0 and p can be chosen from the 
coincidence of D~ with that in Eq. (23) and the condition #2 = 0.25. This 
gives p = 0.53, /~0 = 2-~ ~ 0.71, and 

#q=(q-1) (D-Dq)=log2[O.47x2  -~ q)+ 0.53] (38) 

The corresponding results for the generalized Renyi dimensions in the 
various models are summarized in Fig. 7. Choosing a more flexible fit for 
a probability P(/~), the correspondence for Dq in the random/~-model can 
further be improved to the range of positive q > 0. However, the principal 
inequality (34), D >~ D ~  >~Dq, breaks the possible correspondence to the 
range of negative q < 0, if Dq > O at q < 0 (see also ref. 31). Since the excess 
of Dq over  D at q < 0 has been observed in refs. 17, 18, and 31 well within 
the experimental errors, these data can satisfactorily be described only in 
the framework of the two-scale Cantor set and bounded log-normal 
models. It seems that at the present state of art the theoretical background 

2.0 , , . .  , . , . ' , .  , . , , i . , - t  , , . , ~  
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Fig. 7. The generalized Renyi dimension in the various models of intermittency. (1) Un- 
bounded log-normal distribution with //=0.25; (2) bounded log-normal distribution with 
~1 =0.5, e2=0.7, and ~r=0.245 (solid line); (3) two-scale Cantor set model [Eq. (23) and 
dashed line]; (4) the random fl-model [Eq. (38)]; (5) the homogeneous /~-model with 
/.t 2 = 0.25 [Eq. (27)]. 
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of the bounded log-normal model looks more sound. Thus, the application 
of the bounded log-normal model resolves some difficulties related to the 
original unbounded Kolmogorov-Obukhov distribution and appears to be 
in good agreement with the experimental data. 

As is well known, ~23) the log-normal distribution gives practically 
universal description for low values of q (or near maximum in f-c~ 
curves(IS'31'34)). On the other hand, the high-order moments {e q) (or the 
wings of f - e  curves) are determined by the rare events related to the 
characteristic maximum and minimum level of fluctuations (see for discus- 
sion, e.g., refs. 31 and 34 and further references therein). For this reason the 
bounded log-normal distribution may give a rather universal and adequate 
description of the intermittency throughout a wide range of the parameters. 
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